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Abstract

A theoretical analysis is presented of the flexural vibration of a beam with a control system which
implements direct velocity feedback using either an ideal collocated force actuator or a closely located
piezoelectric patch actuator. The aim of this study is to describe the vibration of the beam as the control
gain is raised. Both control systems generate active damping which reduces the vibration level at resonance
frequencies. However, it is shown that when the gain passes an optimal value then the vibration of the beam
is rearranged into a new set of lightly damped resonance frequencies, since the control systems impose new
boundary conditions at the control position on the beam, in which the velocity is driven to zero in both
cases but different spatial derivatives of the velocity are driven to zero in the case of the force actuator and
the piezoelectric patch actuator.

The new ‘‘natural frequencies’’ and ‘‘natural modes’’ of the beam constrained by the two feedback
control systems with large control gains are derived analytically. The new resonance frequencies and mode
shapes seen in the simulations are consistent with the natural frequencies and natural modes of the
constrained beams derived analytically.
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1. Introduction

This paper presents a theoretical analysis of the new flexural natural frequencies and natural
modes of a beam generated by a control system which implements direct velocity feedback
(DVFB), i.e. active damping, using either an ideal collocated or a practical closely located sensor
actuator pairs with relatively high feedback control gains.
Active damping of flexible distributed systems was first introduced a long time ago [1–3]. Since

then several studies have been presented with different active control approaches based on: (a)
direct velocity feedback, (b) acceleration feedback and (c) positive position feedback. A
comprehensive review of these feedback control schemes for the implementation of active
damping in flexible structures is given in by Preumont [4]. DVFB could be considered to be the
simplest way to implement active damping since the velocity signal measured by a sensor is
electronically multiplied by a fixed gain and feed directly feedback to an actuator. Balas [5], and
Benhabib et al. [6] showed that, if (a) the number of sensors is equal to the number of actuators,
(b) only velocity (rate) sensors are used, (c) the actuators and sensors are collocated and (d) the
actuators do not excite rigid-body modes, then the control scheme is guaranteed to be stable since
the closed-loop system with DVFB is energy dissipative, i.e. it is passive.
This study follows from a previous research work on a smart panel for broad-band low-

frequency reduction of the panel flexural vibration and sound radiation/transmission using an
array of decentralized active damping control systems [7–11]. The smart panel is clamped along
the perimeter and is equipped with an array of closely located accelerometer sensor–piezoelectric
patch actuator pairs that implement decentralized DVFB control loops with the same control
gains. Although these sensor–actuator pairs are not collocated and dual [12,13], it has been shown
that these decentralized control systems are conditionally stable [8,10] and could be used to
generate active damping so that as the equivalent control gains are raised as the vibration of the
panel is gradually reduced at resonance frequencies. As a result the averaged low-frequency
response and sound radiation of the panel due to a broad-band random excitation are also
reduced [7,9,11]. The dissipative effect monotonically grows until an optimal control gain is
reached [7,9]. If the control gains are further increased then the damping effects gradually fade
away and the frequency averaged vibration and sound radiation monotonically rises to the same
or even higher values than those of the panel with no control. The simulation analysis presented in
Ref. [7,9] shows that for higher control gains than the optimal one, the vibration and sound
radiation of the panel is characterized by a new set of lightly damped resonances which cause the
growth of the frequency averaged vibration and frequency averaged sound radiation of the panel.
This phenomenon is due to the fact that for relatively higher control gains the panel is constrained
by the control system so that little active damping can be generated. The vibration of the panel is
therefore rearranged to that of a lightly damped panel that is constrained in a way that depends
on the nature of the control system. These additional constraints change the flexural mode shapes
and the natural frequencies of the panel.
This type of phenomenon is well known in the control literature but is usually discussed

with reference to stability issues. Fundamental text books on feedback control of dynamic
systems, as for example those by Meirovitch [14] and Franklin et al. [15], present the root-locus
method for single-input single-output feedback control and highlight the fact that as the
control gain is raised as the closed-loop poles, and thus the resonance frequencies of the controlled
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system, migrates from the poles to the zeros of the open-loop systems, that is from the resonance
to the antiresonance frequencies of the uncontrolled system. The poles depend on the material
properties and the prescribed boundary conditions of the mechanical system. Alternatively,
the zeros depend on the positions and types of the sensor and actuator [4,16–20]. Martin [16]
showed that the transfer function of a collocated sensor–actuator pair has alternating poles and
zeros along the imaginary axis in the root-locus plot so that, in absence of sensor/actuator
dynamics, a rate feedback control system is guaranteed to be stable. Preumont [4], highlights
that stable rate feedback is guaranteed for any location of the sensor–actuator pair(s) even
though the higher are the controllability and observability (in collocated control they go together)
for a given mode of the system, the bigger is the corresponding loop in the root-locus plot and
thus larger damping effects can be achieved. Indeed the maximum active damping effect on
each mode of the system is given by an intermediate optimal gain that is directly proportional
to the difference between the corresponding resonance (open-loop pole) and antiresonance
(open-loop zero) frequencies and inversely proportional to twice the resonance frequencies of the
open-loop system.
The theory and analysis of DVFB control was developed mainly for position control problems

related to flexible closed chain or open chain (robots) mechanisms. Emphasis was therefore given
to the objective of getting good control performance at a specific position of the system, as for
example position control of a robot’s arm, and most of the analysis was addressed to the stability
problem. That is probably why the modal reconstruction phenomenon described above has not
been studied in great detail and, at best knowledge of the authors, relatively few publications are
devoted to it as for example those listed in Ref. [16–20]. The problem of controlling the sound
radiation of one- or two- dimensional structures vibrating in flexure does instead require a good
understanding of the physics of DVFB: in particular, it calls for a fine comprehension of the
modal response of the structure which would give an insight to the self and mutual radiation of
sound by the modes of the constrained structure [21,22].
The aim of this paper is therefore to derive and analyse the new ‘‘natural frequencies’’ and

‘‘natural modes’’ generated by very high control gains of a DVFB control system in such a way as
to provide a physical interpretation of the reduced sound radiation control effects found for the
smart panels with decentralized DVFB control systems described in Ref. [7–11]. In order to
present a compact analytical formulation a simpler system than the smart panel is considered,
which consists of a simply supported beam excited in flexure with only one control system that
implements direct velocity feedback. The beam is equipped with a DVFB control system using
either a collocated force actuator and velocity sensor or a closely positioned piezoelectric patch
actuator and a velocity sensor. The first is an ideal control system that is unconditionally stable,
while the second is only conditionally stable, but could be used in practice to generate active
damping with integrated transducers and thus reduce the vibration level at resonance frequencies
[9,11,23]. For relatively large control gains the two control systems rearrange the vibration of the
beam into a new set of lightly damped resonance frequencies, since the control systems impose
new boundary conditions at the control position on the beam in which the velocity is driven to
zero in both cases but different spatial derivatives of the velocity are driven to zero in the case of
the force actuator and piezoelectric patch actuator. As a result, for relatively high control gains
the vibration of the actively controlled beam can be described in terms of a new set of ‘‘natural
frequencies’’ and ‘‘natural modes’’.
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The study is subdivided in two parts. The first part describes a mobility model used to derive the
flexural response of the beam with the two types of control systems when it is excited by a plane
acoustic wave. Simulations results are presented which show (a) the total kinetic energy of the
beam in a frequency range between 0 and 1 kHz for a set of control gains and (b) the 0–1 kHz
frequency averaged total kinetic energy as a function of the control gain. Also, the vibration
profile along the beam length is shown for the first four unconstrained and actively constrained
resonance frequencies of the beam. The second part of the paper presents an analytical
formulation for the new natural frequencies and natural modes of the beam with the additional
constraints generated by the two types of control systems. In the appendix an alternative
formulation is also given for the derivation of the new natural frequencies and natural modes of
the actively constrained beam based on the mode-summation procedure for continuous flexible
systems. This is an approximate approach which however enables the calculus of the new natural
frequencies and natural modes for any value of the feedback control gain.
2. Mobility model

The system studied in this paper consists of a simply supported beam with either a collocated
ideal velocity sensor and force actuator direct feedback control system or a practical closely
located velocity sensor and piezoelectric patch actuator direct feedback control system as shown
in Figs. 1a and b, respectively. The steady-state transverse vibration of the beam in a frequency
range 0–1 kHz has been calculated assuming the primary disturbance to be a plane acoustic wave
at an angle y ¼ 451 with harmonic time dependence of the form expðjotÞ: The velocity, force and
moments pair functions used in the model have been taken to be the real part of counterclockwise
rotating complex vectors, so that _wðtÞ ¼ Re _wðoÞejot

� �
; f ðtÞ ¼ Re f ðoÞejot

� �
and mðtÞ ¼

Re mðoÞejot
� �

where _wðoÞ; f ðoÞ and mðoÞ are the complex velocity and force or moments-pair
phasors at t=0, o is the circular frequency and j ¼

ffiffiffiffiffiffiffi
�1

p
:

Fig. 1. Simply supported beam with (a) an ideal collocated velocity sensor and force actuator and (b) a practical closely

located velocity sensor and piezoelectric patch actuator.
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The phasors of the transverse velocities along the beam length, _wbðx;oÞ; and at the error sensor
position, _wcðoÞ; could be expressed in terms of the primary and secondary excitations as follows:

_wbðx;oÞ ¼ Y bpðx;oÞppðoÞ þ Y bcðx;oÞucðoÞ; (1)

_wcðoÞ ¼ Y cpðoÞppðoÞ þ Y ccðoÞucðoÞ; (2)

where ppðoÞ is the phasor of the acoustic pressure of the incident primary wave and ucðoÞ is the
phasor of the control excitation which could be either the control force or the control moments
pair which are denoted f zcðoÞ and mycðoÞ; respectively, in Fig. 1. The stiffening and mass effects of
the piezoelectric patch actuator will not be taken into account in the model, therefore the four
mobility terms in Eqs. (1) and (2) are given by the following formulae:

Y bpðx;oÞ ¼ /ðxÞapðoÞ; Y bcðx;oÞ ¼ /ðxÞacðoÞ; (3,4)

Y cpðoÞ ¼ /ðxcÞapðoÞ; Y ccðoÞ ¼ /ðxcÞacðoÞ; (5,6)

where fðxÞ are row vectors with the first R flexural natural modes of the beam

/ðxÞ ¼ f1ðxÞ f2ðxÞ � � � fRðxÞ
� �

(7)

and apðoÞ; acðoÞ are column vectors of the excitation terms of the first R flexural natural modes of
the unconstrained beam due to either the primary or control excitations:

apðoÞ ¼

ap;1ðoÞ

ap;2ðoÞ

..

.

ap;RðoÞ

2
66664

3
77775; acðoÞ ¼

ac;1ðoÞ

ac;2ðoÞ

..

.

ac;RðoÞ

2
66664

3
77775: (8,9)

The terms in the primary excitation vector, apðoÞ; are given by

ap;rðoÞ ¼
4ly

R lx

0 frðxÞe
�jkxxdx

M o2
r � o2 þ j2zroro

� � ; (10)

while the terms for either the force or moments pair control excitations in the control excitation
vector, acðoÞ; are given, respectively, by

ac;rðoÞ ¼
2frðxcÞ

M o2
r � o2 þ j2zroro

� � ; ac;rðoÞ ¼
2 f0

rðxc � eÞ � f0
rðxc þ eÞ

� �
M o2

r � o2 þ j2zroro
� � ; (11a,b)

where ly is the width of the beam, kx ¼ k sin y is the trace of the acoustic wavenumber k, or is the
rth flexural natural frequency, frðxÞ is the rth flexural natural mode, f0

rðxÞ ¼ dfrðxÞ=dx is the first
derivative in x of the rth flexural natural mode, 2e is the length of the piezoelectric control
actuator, zr is the damping factor of the rth flexural natural mode and M ¼ rAlx is the mass of
the beam with r the density of the material, A the cross-sectional area and lx the length of the
beam. The flexural natural frequencies and natural modes of a simply supported beam are given
by the following formulae [24]:

or ¼
r2p2

l2

ffiffiffiffiffiffiffiffi
EIy

Ar

s
; frðxÞ ¼ sin

rpx

l
; (12,13)
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where E is Young’s modulus elasticity and Iy is the cross-sectional second moment of area with
reference to the y-axis. When there is no control action, i.e. ucðoÞ ¼ 0; then the transverse velocity
along the beam length can be calculated directly from Eq. (1) to be

_wbðx;oÞ ¼ Y bpðx;oÞppðoÞ: (14)

When, as shown in the block diagram in Fig. 2, the sensor–actuator pair implements velocity
feedback control with a fixed control gain h, such that

ucðoÞ ¼ �h _wcðoÞ; (15)

then, provided the control loop is stable, the velocity at the error sensor position is given by

_wcðoÞ ¼
Y cpðoÞ

1þ hY ccðoÞ
ppðoÞ (16)

and the transverse velocities along the beam length are given by

_wbðx;oÞ ¼ Y bpðx;oÞ � Y bcðx;oÞ
hY cpðoÞ

1þ hY ccðoÞ

� �
ppðoÞ: (17)

It should be underlined that this result is valid provided the control system is stable. If the
sensor–actuator transducers are collocated and dual, i.e. the detection and excitation of a point
sensor–actuator pair occurs for the same degree of freedom [12], then the sensor–actuator
response function is constrained to be positive real [5,6]. Therefore the denominator of Eq. (16) is
always positive and greater than one so that the ratio _wcðoÞ=ppðoÞ is monotonically reduced as the
control gain h is raised and thus the feedback control loop in Fig. 2 is guaranteed to be
unconditionally stable.
The overall flexural vibration level of the beam has been represented in term of the total kinetic

energy

TðoÞ ¼
1

2

Z lx

0

rAj _wðx;oÞj2 dx; (18)
-h

Ycp( jω)

+ + wc( jω)

p( jω)

∑
.

uc( jω)
Ycc( jω)

Fig. 2. Block diagram of feedback control system implemented in the beam.
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which, using Eqs. (14) and (17), becomes, respectively, for the cases with and without feedback
control:

TðoÞ ¼ 1
4
Mp


pðoÞa
H
p ðoÞapðoÞppðoÞ (19)

and

TcðoÞ ¼ 1
4
Mp


pðoÞ a
H
p ðoÞ þ aHfcðoÞ

h i
apðoÞ þ afcðoÞ
� �

ppðoÞ; (20)

where * denotes the conjugate and H denotes the Hermitian transpose. afc is the column vector
with the modal excitation terms generated by the control systems which, using Eqs. (15) and (16),
is found to be given by the following relation:

afcðoÞ ¼ acðoÞ
hY cpðoÞ

1þ hY ccðoÞ
: (21)

With this formulation it has been possible to derive (a) the total flexural kinetic energy between 0
and 1 kHz; (b) the 0–1 kHz frequency averaged total flexural kinetic energy for a range of control
gains between 0.01 and 1000 and (c) the flexural vibration amplitude along the beam length at
specific frequencies. These three types of results can be used to describe the control effects and the
consequent rearrangement of the modal response of the beam when higher gains are implemented
with the two control systems. The dimensions and the material properties of the beam considered
in this study are summarized in Table 1. In order to better highlight the modal response of the
beam a relatively low damping ratio of 0.1% has been used. With such a low damping, the forced
response of the beam at a resonance frequency is dominated by the resonant natural mode.
2.1. Active damping with the collocated velocity sensor and force actuator

The total flexural kinetic energy of the beam excited by the primary acoustic plane wave is
shown in Fig. 3 for a frequency range between 0 and 1 kHz. On the top part of the plot, the
modulus of the velocity sensor frequency response function, Y ccðoÞ; when driven by the force
actuator is also plotted in order to highlight the resonance frequencies of the beam and the
Table 1

Geometry and physical parameters for the beam

Parameter Value

Length lx ¼ 300mm

Cross section ly � lz ¼ 25� 1mm

Position of the control system xc ¼ 127:5mm

Piezoelectric patch length 2e ¼ 6mm

Mass density r ¼ 2700kg=m3

Young’s modulus E ¼ 7:1� 1010 N=m2

Poisson’s ratio n ¼ 0:33
Damping ratio of the

rth natural mode zr ¼ 0:001
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Fig. 3. Total flexural kinetic energy of the beam, when it is excited by the acoustic plane wave, with no control, thicker

solid line, and with the collocated velocity sensor and force actuator feedback control system having a feedback gain of

1.05 dashed, 5.34 faint (optimal control gain), and 1000 dash–dotted lines. On the top part of the graph is plotted the

modulus of the velocity sensor–force actuator frequency response function shifted by 60 dB.

Table 2

Resonance frequencies of the beam observed without control system and with either the velocity sensor and collocated

force actuator or the closely located velocity sensor and piezoelectric patch actuator control systems with very high

feedback control gains

Resonance number Resonance frequency of

the beam with no control

system (Hz)

Resonance frequencies of

the beam with the velocity

sensor and force actuator

(Hz)

Resonance frequencies of

the beam with the velocity

sensor and piezoelectric

patch actuator (Hz)

1 25.8 92.8 54.6

2 103.3 185.7 117.6

3 232.5 355.6 276.9

4 413.4 622.5 498.2

5 645.7 793.3 681.3

6 930.1

P. Gardonio, S.J. Elliott / Journal of Sound and Vibration 284 (2005) 1–228
antiresonance frequencies due to this sensor–actuator pair [4,20]. This plot shows the presence of
six resonance frequencies as summarized in Table 2. When the feedback control loop is closed and
the control gain is gradually raised from zero, then, the collocated velocity sensor and control
force actuator system progressively introduce damping at the six resonance frequencies as
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highlighted by the dashed and faint lines in Fig. 3. As expected, the damping effect for a given
feedback control gain is relatively large for the first resonance and tends to be smaller for the
higher order resonances. The maximum reduction of the total kinetic energy, and thus the
maximum damping effect, over the 0–1 kHz frequency band, is shown by the faint line in Fig. 3,
corresponding to a feedback gain 5.34. If the control gain is further increased, then the vibration
of the beam is rearranged into a new set of lightly damped resonances as shown by the
dash–dotted line in Fig. 3 whose frequencies are listed in Table 2. Comparing this curve with the
sensor–actuator frequency response function plotted above, it is clear that these new resonance
frequencies correspond to the antiresonances generated by the collocated velocity sensor and force
actuator.
The main features of this behaviour are summarized in Fig. 4, where the 0–1 kHz frequency

averaged total kinetic energy ratio of the beam without and with feedback control is plotted
against the feedback gain in a range between 10�5 and 105 (solid line). This plot illustrates that as
the control gain is gradually raised from zero as the frequency averaged total kinetic energy, and
thus the overall vibration of the beam, is reduced. A maximum reduction of 16.7 dB is achieved
for a control gain of 5.34. However, for higher control gains, the overall kinetic energy of the
beam monotonically rises to even higher values than those of the beam with no control.
The aim of this paper is to analyse the response of the beam for very high control gains to

investigate the modal response at the new resonance frequencies. Fig. 5 shows the vibration along
the beam length at the first four resonance frequencies of the uncontrolled beam. The maximum
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Fig. 4. Ratio of the beam total kinetic energy without and with feedback control integrated from 0–1 kHz, plotted

against the gain in the feedback controller, h, for the collocated velocity sensor and force actuator control system (solid

line) and the closely located velocity sensor and piezoelectric patch actuator control system (dashed line).
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f=25.8 Hz f=103.3 Hz

f=232.5 Hz f=413.4 Hz

Fig. 5. Vibration of the beam excited by the plane acoustic wave at the first four resonance frequencies when there is no

control.
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amplitude of the four responses have all been normalized to be equal. As one would expect, the
first four resonant responses of the beam are controlled by the first four flexural natural modes of
the unconstrained beam given in Eq. (13). Fig. 6 shows the vibration distribution along the beam
length at the first four new resonance frequencies when large control gains are implemented with
the collocated velocity sensor and force actuator feedback control system. The maximum
amplitude of the four responses have again been normalized to be equal. Since at resonance
frequencies the response of the beam is primarily determined by the natural modes of the beam,
the four plots should give a fair representation of the new mode shapes of the beam when
constrained by the direct velocity feedback control system with the force actuator. For high
control gains the new resonant responses of the beam are the same as those of a beam pinned at
the error sensor positions.

2.2. Active damping with the closely positioned velocity sensor and piezoelectric patch actuator

The top part of Fig. 7 shows the modulus of the frequency response function from the
piezoelectric patch actuator to the velocity sensor, Y ccðoÞ: The piezoelectric patch actuator is
modelled as a pair of moments separated by a distance of 6mm, as described above. The
resonance frequencies of the beam are the same as those above, but the antiresonance frequencies
due to this sensor–actuator pair are not the same as in Fig. 3 [4,20]. When the feedback control
loop is closed and the control gain is progressively raised from zero, then, the closely located
velocity sensor and piezoelectric patch actuator control system gradually introduce damping at
the six resonance frequencies as highlighted by the dashed and faint lines in Fig. 7. Also in this
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f=92.8 Hz f=185.7 Hz

f=355.6 Hz f=622.5 Hz

Fig. 6. Vibration of the beam excited by the plane acoustic wave at the first four new resonance frequencies when large

control gains are implemented with the collocated velocity sensor and force actuator feedback control system.
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case, for a given feedback gain the damping effect is relatively large for the first resonance and
tends to be smaller and smaller for the higher order resonances. The maximum reduction of the
total kinetic energy, and thus the maximum damping effect over the 0–1 kHz frequency band, is
shown by the faint line in Fig. 7, corresponding to a feedback gain 1.32. As seen in the previous
case, when the control gain is further increased then the vibration of the beam is rearranged into a
new set of lightly damped resonances as shown by the dash–dotted line in Fig. 7. Comparing this
curve with the sensor–actuator frequency response function plotted above, it is clear that these
new resonance frequencies again correspond to the antiresonances generated by the closely
located velocity sensor and piezoelectric patch actuator. As summarized in Table 2, the new
resonance frequencies in this case occur for lower frequencies than those found in the previous
case, with the collocated force actuator and velocity sensor.
The 0–1 kHz frequency averaged total kinetic energy ratio of the beam without and with

feedback control is shown by the dashed line in Fig. 4 for a range of control gains between 10�5

and 105. As for the previous case, the frequency averaged total kinetic energy, and thus the overall
vibration of the beam, is reduced as the control gain is increased until a maximum reduction of
16.7 dB is achieved for a control gain of 1.32, but the overall kinetic energy then rises with higher
feedback gains and is greater than with no control when the new resonance dominate.
Fig. 8 shows the vibration distribution along the beam length at the first four new resonance

frequencies when large control gains are implemented with the closely located velocity sensor
and piezoelectric patch actuator feedback control system which, being at a resonance frequencies,
should give a fair representation of the new mode shapes of the beam when constrained by
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Fig. 7. Total flexural kinetic energy of the beam, when it is excited by the acoustic plane wave, with no control, thicker

solid line, and with the collocated velocity sensor and piezoelectric patch actuator feedback control system having a

feedback gain of 0.41, dashed, 1.32 faint (optimal control gain) and 1000 dash–dotted lines. On the top part of the

graph is plotted the modulus of the velocity sensor–piezoelectric patch actuator frequency response function shifted by
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the direct velocity feedback control system with the piezoelectric patch actuator. The maximum
amplitude of the four responses have again been normalized to be equal. These plots highlight
that for large control gains the new resonant responses of the beam are pinned at the error
sensor positions. In this case however the moment excitation of the control actuator produce
quite irregular vibration fields corresponding to no obvious boundary condition at the error
sensor location.
3. Natural modes of the actively constrained beam

The natural modes of the beam when the velocity at the control position is constrained by a
collocated force actuator or a closely positioned piezoelectric patch actuator are now derived
analytically and compared with the vibration of the beam at the new resonance frequencies
generated by the control systems with relatively high control gains which, for the relatively low
damping ratio considered in this study, should give a fair representation of the natural modes. The
wave equation for free flexural vibrations in a beam is given by [24]

EIy

q4wðx; tÞ
qx4

þ rA
q2wðx; tÞ

qt2
¼ 0; (22)
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f=276.9 Hz f=498.2 Hz

Fig. 8. Vibration of the beam excited by the plane acoustic wave at the first four new resonance frequencies when large

control gains are implemented with the closely located velocity sensor and piezoelectric patch actuator feedback control

system.
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which, assuming harmonic vibration in the form wðx; tÞ ¼ ReffðxÞejotg and supposing the time-
dependent term expðjotÞ to be implicit in all expressions, becomes

d4fðxÞ
dx4

� b4fðxÞ ¼ 0; (23)

where b ¼
ffiffiffiffi
o

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA=ðyÞEI4

p
: The solution of this fourth order differential equation can be written

in the form

fðxÞ ¼ A cosh bx þ B sinh bx þ C cos bx þ D sin bx: (24)
3.1. Beam with the collocated velocity sensor and force actuator feedback control system

The natural modes of the controlled beam with the collocated velocity sensor and force
actuator as h ! 1 can be derived by dividing the beam into two bays with the two mirror systems
of reference x1 and x2 as shown in Fig. 9. The boundary conditions for the two bays are as
follows:

f1ð0Þ ¼ 0;
d2f1ðx1Þ

dx2
1

����
x1¼0

¼ 0; f1ðl1Þ ¼ 0; (25a2c)

f2ð0Þ ¼ 0;
d2f2ðx2Þ

dx2
2

����
x2¼0

¼ 0; f2ðl2Þ ¼ 0; (26a2c)
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Fig. 9. Simply supported beam divided into two elements with the left to right x1 system of reference and the right to

left x2 system of reference.
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which define the simply supported ends of the beam and the fact that the velocity is driven to zero
at the control point. Imposing the two boundary conditions for x1=0 and x2=0 it is found that

A1 ¼ C1 ¼ 0; A2 ¼ C2 ¼ 0 (27a,b)

and setting the other two boundary conditions for x1=l1 and x2=l2 the spatial functions f1ðx1Þ

and f2ðx2Þ becomes

f1ðx1Þ ¼ F1 sinbx1 � a1 sinhbx1ð Þ and f2ðxÞ ¼ F2 sinbx2 � a2 sinhbx2ð Þ; (28a,b)

where

a1 ¼
sinbl1

sinh bl1
and a2 ¼

sin bl2

sinhbl2
: (29a,b)

The values of the two coefficients F1 and F2 can be found in this case by imposing the continuity
of the first and second spatial derivatives of the functions f1ðx1Þ and f2ðx2Þ for x1=l1 and x2=l2,
which are consistent with the use of a force actuator, so that

df1ðx1Þ

dx1

����
x1¼l1

¼ �
df2ðx2Þ

dx2

����
x2¼l2

;
d2f1ðx1Þ

dx2
1

����
x1¼l1

¼
d2f2ðx2Þ

dx2
2

����
x2¼l2

(30)

which gives two homogeneous equations in F1 and F2, that could be written in the following
matrix form:

b cos bl1 � a1 coshbl1ð Þ b cos bl2 � a2 coshbl2ð Þ

b2 � sinbl1 � a1 sinhbl1ð Þ �b2 � sin bl2 � a2 sinhbl2ð Þ

� �
F1

F2

� �
¼

0

0

� �
: (31)

Non-trivial solutions for F1 and F2 are found by imposing the determinant of the 2� 2 matrix to
be equal to zero. The values of b that bring to zero the determinant, that will be referred as br; give
the natural frequencies. Using the definition of b given for Eq. (23), the natural frequencies are
then found with the formulae:

or ¼ b2r

ffiffiffiffiffiffiffiffi
EIy

rA

s
: (32)
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The natural modes can then be derived by substituting the values of br into Eqs. (28a,b) and
(29a,b) so that

f1ðx1Þ ¼ Fsr sin brx1 � a1 sinh brx1

� �
; (33a)

f2ðx2Þ ¼ F sin brx2 � a2 sinhbrx2

� �
; (33b)

where

sr ¼ �
cosbrl2 � a2 cosh brl2

cosbrl1 � a1 cosh brl1
: (34)

The left column of Table 3 gives the first five natural frequencies, calculated using Eq. (32) with
the values of b from Eq. (31), of the constrained beam with the collocated velocity sensor and
force actuator system together with the five resonance frequencies found in the simulations above.
The analytical natural frequencies are quite close to the observed resonance frequencies. Fig. 10
shows the first four natural modes of the constrained beam calculated using formulae (33a) and
(33b). The collocated velocity sensor and force actuator control system with large feedback
control gains introduces a pinning constraint, as shown in Fig. 6, that changes the modes in such a
way as shown in Fig. 10 they are similar to those of two simply supported beams joined at the
control position. The calculation of the natural frequencies and natural modes cannot, however,
be reduced to that of two simply supported beams.

3.2. Beam with the collocated velocity sensor and moments pair actuator feedback control system

The natural modes of the beam with the closely located velocity sensor and piezoelectric patch
actuator can be derived in a similar manner to that used in the previous section. The beam is
divided into two bays with the two mirror systems of reference x1 and x2 as shown in Fig. 9. For
this control case some of the boundary conditions for the two bays are the same as for the
previous one, given by Eqs. (25a–c) and (26a–c). Thus the two beam functions f1ðxÞ and f2ðxÞ

are given by Eqs. (28a) and (28b), respectively. In this case, however, assuming the length of the
Table 3

Observed resonance and calculated natural frequencies of the beam with either the collocated velocity sensor and force

actuator or the closely located velocity sensor and piezoelectric patch actuator control systems with very high feedback

control gains

Resonance number Beam with the velocity sensor and force

actuator

Beam with the velocity sensor and

piezoelectric patch actuator

Resonance

frequencies (Hz)

Natural frequencies

(Hz)

Resonance

frequencies (Hz)

Natural frequencies

(Hz)

1 92.8 94.2 54.6 54.4

2 185.7 187.3 117.6 119.2

3 355.6 358.3 276.9 278.8

4 622.5 624.9 498.2 496.4

5 793.3 795.3 681.3 679.4
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Fig. 10. New natural modes of the constrained beam by the collocated velocity sensor and force actuator feedback

control system with a large control gain.
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piezoelectric patch actuator to be smaller than the bending wavelength, i.e. eop=kB where kB is
the bending wavenumber, the bending moments and the shear forces at the two ends of the
piezoelectric patch have equal magnitude, but opposite sign in the latter case, so that the two
coefficients F1 and F2 are then obtained by imposing the following two conditions:

d2f1ðx1Þ

dx2
1

����
x1¼l1�e

¼
d2f1ðx2Þ

dx2
2

����
x2¼l2�e

;
d3f1ðx1Þ

dx3
1

����
x1¼l1�e

¼ �
d3f1ðx2Þ

dx3
2

����
x2¼l2�e

(35a,b)

which gives two homogeneous equations in F1 and F2, that could be written in the following
matrix form:

�b3 cosbðl1 � eÞ � a1 cosh bðl1 � eÞð Þ �b3 cos bðl2 � eÞ � a2 cosh bðl2 � eÞð Þ

b2 � sin bðl1 � eÞ � a1 sinh bðl1 � eÞð Þ �b2 � sinbðl2 � eÞ � a2 sinhbðl2 � eÞð Þ

" #
F1

F2

� �
¼

0

0

� �
:

(36)

Non-trivial solutions for F1 and F2 are found by imposing the determinant of the 2� 2 matrix to
be equal to zero. As discussed in the previous case, the values of b that bring to zero the
determinant, that will be referred as br; give the natural frequencies so that, using the definition of
b given for Eq. (23), the natural frequencies are then found with the formulae

or ¼ b2r

ffiffiffiffiffiffiffiffi
EIy

rA

s
: (37)

Using Eqs. (28a) and (28b) the natural modes of the entire beam are then given by the two
following functions:

f1ðx1Þ ¼ Fsr sinbrx1 � a1 sinhbrx1

� �
; (38a)

f2ðx2Þ ¼ F sin brx2 � a2 sinhbrx2

� �
; (38b)
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Fig. 11. New natural modes of the constrained beam by the closely located velocity sensor and piezoelectric patch

actuator feedback control system with a large control gain.
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where

sr ¼
cos brðl2 � eÞ þ a2 coshbrðl2 � eÞ

cos brðl1 � eÞ þ a1 coshbrðl1 � eÞ
: (39)

The right column of Table 3 gives the first five resonance frequencies and the first five natural
frequencies, calculated using Eq. (37) with the values of br from Eq. (36), of the constrained beam
with the closely located velocity sensor and piezoelectric patch actuator feedback control system.
Also in this case the analytical natural frequencies are quite close to the resonance frequencies as
expected for the lightly damped beam systems when the closely located velocity sensor and
piezoelectric patch actuator implements large control gains. The first four natural modes of the
constrained beam calculated using formulae (38a) and (38b) are shown in Fig. 11. The
piezoelectric patch actuator is driven to reduce the vibration of the beam at the error sensor
position and, when relatively large control gains are implemented, it holds back the beam at the
error sensor position. The reactive actuation mechanism of the piezoelectric patch produces
relatively irregular mode shapes as can be seen in Fig. 11. Comparing these four mode shapes with
the four plots given in Fig. 8 it is found that also in this case the response of the constrained beam
at resonance frequencies is controlled by the new natural modes of the constrained beam.
The results presented in this subsection have also been extended to the case where the length of

the piezoelectric patch actuator is not constrained to be smaller than the bending wavelength. An
approximate approach is introduced in the appendix that could be used to derive the natural
frequencies and natural modes of the simply supported beam when constrained by the control
system with large feedback control gains.
4. Concluding remarks

This paper presents a theoretical analysis of the flexural response of a beam with a
control system which implements direct velocity feedback, i.e. active damping, using either a
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collocated velocity sensor and force actuator or a closely located velocity sensor and piezoelectric
patch actuator. The aim of this paper is to analyse the new natural frequencies and natural modes
generated by very high control gains of the velocity feedback control system.
The study shows that as the control gain is increased, the vibration of the beam is initially

reduced at resonance frequencies because of the active damping effect. However this effect does
not continue, at which the vibration of the beam is rearranged into a new set of lightly damped
resonance frequencies so that the overall kinetic energy of the beam is increased to the same or
even higher values than those of the beam without control systems.
The new natural frequencies and natural modes of the beam constrained by two feedback

control systems with either force or moment pair actuation have been derived analytically and
good agreement has been found between the values of the new natural frequencies and the
resonance frequencies of the controlled beams when large control gains are implemented. Also the
new natural mode shapes have been found to be very similar to the vibrations along the beam
length at the resonance frequencies of the beams when constrained by large control gains.
Appendix

Following the mode-summation procedures for continuous flexible systems presented by
Thomson [25], if the transverse displacement of a beam is expressed in terms of the bending
natural modes frðxÞ with a series expansion such that

wðx; tÞ ¼
X

r

frðxÞqrðtÞ; (A.1)

then the generalized coordinates qrðtÞ can be determined from the Lagrange’s equations

d

dt

qT

q _qr

� �
�

qT

qqr

þ
qD

q _qr

þ
qU

qqr

¼ Qr; (A.2)

where the kinetic energy, strain energy and Rayleigh’s dissipation functions are, respectively,
given in terms of the generalized coordinates as follows:

T ¼
1

2

X
r

Mr _q
2
r ; U ¼

1

2

X
r

Krq
2
r ; D ¼

1

2

X
r

Cr _q
2
r : (A.3a2c)

For bending vibration of a beam the generalized mass Mr, stiffness Kr and damping Cr are given
by

Mr ¼

Z lx

0

rAf2
r ðxÞdx; Kr ¼

Z lx

0

EIy f00
r ðxÞ

� �2
dx; Cr ¼ aMr þ bKr: (A.4a2c)

with

aþ o2
rb ¼ 2zror; (A.5)

where or and zr are, respectively, the natural frequency and modal damping ratio of
the rth natural mode of the beam and f00

r ðxÞ ¼ @2frðxÞ=@x2: The generalized force Qr is
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given by

Qr ¼

Z lx

0

f zðxÞfrðxÞdx þ

Z lx

0

myðxÞf
0
rðxÞdx; (A.6)

where f zðxÞ and myðxÞ are, respectively, the transverse force and bending moment acting along the
beam length and f0

ðxÞ ¼ qfðxÞ=qx: If the beam is excited only by the control force or moments
pair as shown in Fig. 1, then the generalized forces will be given, respectively, by

Qr ¼ f zcfrðxcÞ; Qr ¼ myccrðxcÞ; (A.7)

where crðxcÞ ¼ f0
rðxc � eÞ � f0

rðxc þ eÞ
� �

and fzc and myc are, respectively, the control force and
control moments generated by the force and piezoelectric patch actuators. If direct velocity
feedback is implemented then, according to the block diagram in Fig. 2, f zc ¼ �h _wc and myc ¼

�h _wc so that, using the series expansion for _wc given by Eq. (A.1),

_wcðtÞ ¼
X

s

fsðxcÞ _qsðtÞ (A.8)

the generalized forces for the two control cases become

Qr ¼ �hfrðxcÞ
X

s

fsðxcÞ _qs; Qr ¼ �hcrðxcÞ
X

s

fsðxcÞ _qs: (A.9a,b)

Substituting the expressions for the kinetic and strain energies given by Eqs. (A.3a) and (A.3b)
and for the generalized forces (A.9a,b) into the Lagrange’s Eq. (A.2) the following second-order
ordinary differential equations in qr are derived for the two control cases:

€qr þ 2zror _qr þ o2
r qr ¼ �

h

Mr

frðxcÞ
X

s

fsðxcÞ _qs; (A.10a)

€qr þ 2zror _qr þ o2
r qr ¼ �

h

Mr

crðxcÞ
X

s

fsðxcÞ _qs; (A.10b)

with r ¼ 1; . . . ;R and s ¼ 1; . . . ;R: Considering harmonic motion such that qðtÞ ¼ Re qðoÞejot
� �

;
then, assuming the time-dependent term expðjotÞ to be implicit in all the following expressions,
the two sets of equations can be written in the following matrix form:

AðoÞ½ � qðoÞ
� �

¼ 0f g; (A.11)

where the vector fqðoÞg contains the frequency-dependent generalized coordinates q1ðoÞ;
q2ðoÞ; . . . ; qRðoÞ

qðoÞ
� �

¼

q1ðoÞ

q2ðoÞ

..

.

qRðoÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; (A.12)
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and, considering the two control cases, the diagonal and off-diagonal terms of the matrix ½AðoÞ�
are given by

ArrðoÞ ¼ �o2 þ jo 2zror þ h
f2

r ðxcÞ

Mr

� �
þ o2

r ; (A.13a)

ArrðoÞ ¼ �o2 þ jo 2zror þ h
frðxcÞcrðxcÞ

Mr

� �
þ o2

r ; (A.13b)

ArsðoÞ ¼ joh
frðxcÞfsðxcÞ

Mr

; (A.14a)

ArsðoÞ ¼ joh
frðxcÞcsðxcÞ

Mr

: (A.14b)

The damped natural frequencies of the beam with the two DVFB control systems under study are
then found by imposing the determinant of the matrix AðoÞ to be zero:

det AðoÞ½ � ¼ 0: (A.14)

As described in the paper, for high control gains the beam is constrained to be fixed at the error
sensor position xc and in this case Eq. (A.14) gives the natural frequencies of the constrained
beam. The co respective natural modes are then obtained from Eq. (A.1) using the generalized
coordinated derived from Eq. (A.11) to within a constant. The natural frequencies and natural
modes derived with this formulation for the case of large velocity feedback control gains have
been found to be consistent with those found with the analytical formulation presented in Section
3 and with the new resonance frequencies found in the plots given in Figs. 3 and 7 of the total
kinetic energy of the beam when very high control gains are implemented.
With this formulation it is possible to better understand two phenomena: first the variation of

the natural frequencies and natural modes of the beam with reference to the velocity feedback
control gain and second, the active damping effect introduced by the direct velocity feedback
control system. If for example the beam with the collocated velocity sensor and force actuator
control system is analysed, then considering the terms in the rth row of the matrix ½AðoÞ�; one can
see that the direct velocity feedback control system introduces on the rth natural mode of the

beam R extra damping terms joh
PR
s¼1

frðxcÞfsðxcÞ=Mr: These extra damping effects can be

expressed in terms of modal active damping ratios:

drs ¼ h
frðxcÞfsðxcÞ

2Mror

; (A.15)

which are (a) directly proportional to the control gain, (b) inversely proportional to the natural
frequency or and (c) directly proportional to the product of the amplitude of the rth and sth
natural modes of the beam at the control position. In this specific case where a collocated sensor
and actuator are used, the self-active damping ratio drr is always positive so that an additional
damping effect is generated. In contrast the mutual active damping ratios drs could be either
positive or negative depending on the relative sign of the rth and sth natural modes of the beam at
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the control positions [20]. In other words, these mutual active damping ratios will introduce
some additional negative or positive damping effects. The extent of these mutual damping
effects between two modes is however determined by the amplitudes of the generalized coordinate
relative to the two modes themselves. As a result, for each frequency there will be an optimal
control gain that will minimize the overall vibration of the beam. If instead the control gain is
kept constant with frequency, then, as discussed in Sections 2.1 and 2.2 there will be an
overall optimal control gain that produces the best averaged control effect over the frequency
band considered.
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